Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.424
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1380976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596648

RESUMEN

Introduction: The hemin acquisition system is composed of an outer membrane TonB-dependent transporter that internalizes hemin into the periplasm, periplasmic hemin-binding proteins to shuttle hemin, an inner membrane transporter that transports hemin into the cytoplasm, and cytoplasmic heme oxygenase to release iron. Fur and HemP are two known regulators involved in the regulation of hemin acquisition. The hemin acquisition system of Stenotrophomonas maltophilia is poorly understood, with the exception of HemA as a TonB-dependent transporter for hemin uptake. Methods: Putative candidates responsible for hemin acquisition were selected via a homolog search and a whole-genome survey of S. maltophilia. Operon verification was performed by reverse transcription-polymerase chain reaction. The involvement of candidate genes in hemin acquisition was assessed using an in-frame deletion mutant construct and iron utilization assays. The transcript levels of candidate genes were determined using quantitative polymerase chain reaction. Results: Smlt3896-hemU-exbB2-exbD2-tonB2 and tonB1-exbB1-exbD1a-exbD1b operons were selected as candidates for hemin acquisition. Compared with the parental strain, hemU and tonB1 mutants displayed a defect in their ability to use hemin as the sole iron source for growth. However, hemin utilization by the Smlt3896 and tonB2 mutants was comparable to that of the parental strain. HemA expression was repressed by Fur in iron-replete conditions and derepressed in iron-depleted conditions. HemP negatively regulated hemA expression. Like hemA, hemU was repressed by Fur in iron-replete conditions; however, hemU was moderately derepressed in response to iron-depleted stress and fully derepressed when hemin was present. Unlike hemA and hemU, the TonB1-exbB1-exbD1a-exbD1b operon was constitutively expressed, regardless of the iron level or the presence of hemin, and Fur and HemP had no influence on its expression. Conclusion: HemA, HemU, and TonB1 contribute to hemin acquisition in S. maltophilia. Fur represses the expression of hemA and hemU in iron-replete conditions. HemA expression is regulated by low iron levels, and HemP acts as a negative regulator of this regulatory circuit. HemU expression is regulated by low iron and hemin levels in a hemP-dependent manner.


Asunto(s)
Hemina , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hierro/metabolismo
2.
Zool Res ; 45(3): 468-477, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38583938

RESUMEN

Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.


Asunto(s)
Proteínas Hierro-Azufre , Animales , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Hierro/metabolismo , Azufre/metabolismo
3.
J Physiol Pharmacol ; 75(1)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38583437

RESUMEN

The dysregulation of iron metabolism is closely linked to the onset and progression of lung cancer. This study aimed to explore the association between iron metabolism indicators (serum iron, transferrin, ferritin) and the expression level of programmed death factor ligand 1 in primary lesions of advanced non-small cell lung cancer. A cohort of 62 patients, including 42 men and 20 women, was recruited from October 2022 to July 2023, all diagnosed with advanced non-small cell lung cancer, confirmed through radiographic imaging and histopathological analysis. Comprehensive clinical data (such as gender, age, familial lung cancer history, smoking history, pathological classification, clinical stage, etc.) and concentrations of fasting serum iron, transferrin, and ferritin were collected. Patients were categorized into PD-L1 negative (<1% expression) and programmed death ligand 1 (PD-L1) positive (≥1% expression) groups based on PD-L1 expression levels in tumor tissues. Subsequently, the correlation between levels of serum iron, transferrin, ferritin, and PD-L1 expression in advanced non-small cell lung cancer were examined. Patients in the PD-L1 positive group exhibited lower levels of peripheral serum iron and transferrin compared to those in the PD-L1 negative group (P<0.05). For patients exhibiting positive PD-L1 expression, a negative correlation was observed between PD-L1 expression and both serum iron and transferrin levels (r = -0.465, P=0.003; r = -0.447, P=0.005), and a positive correlation was noted between PD-L1 expression and ferritin levels (r=0.393, P=0.015). We conclude that in In patients with advanced non-small cell lung cancer, serum iron and transferrin levels can serve as partial predictors of PD-L1 expression; among those positive for PD-L1, a significant association exists between indicators of iron metabolism and PD-L1 expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Femenino , Humanos , Masculino , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Ferritinas , Hierro/metabolismo , Neoplasias Pulmonares/patología , Transferrinas
4.
Mol Neurodegener ; 19(1): 36, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641847

RESUMEN

The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.


Asunto(s)
COVID-19 , Ferroptosis , Melatonina , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Antioxidantes/metabolismo , Encéfalo/metabolismo , Envejecimiento , Hierro/metabolismo
5.
PLoS One ; 19(4): e0302050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603713

RESUMEN

INTRODUCTION: Biliary tract cancer (BTC) is a lethal disease with a bad overall survivability, partly arising from inadequate therapeutic alternatives, detection at a belated stage, and a resistance to common therapeutic approaches. Ferroptosis is a form of programmed cell death that depends on reactive oxygen species (ROS) and iron, causing excessive peroxidation of polyunsaturated fatty acids (PUFAs). Therefore, the objective of this investigation is, whether ferroptosis can be induced in BTC in vitro and whether this induction is dependent on specific molecular markers. METHODS: The study conducted resazurin assay and IC25/50 calculation to explore the possible cytotoxic outcomes of different classes of ferroptosis-inducing substances (FINs) on a comprehensive in vitro model of 11 BTC cell lines. Combinatory treatments with different cell death inhibitors were performed to evaluate the magnitude of ferroptosis induction. To ascertain whether ferroptotic cell death occurred, liperfluo and iron assay kits were employed to evaluate lipid ROS and intracellular iron abundance. Potential biomarkers of ferroptosis sensitivity were then assessed via western blot analysis, a rtPCR panel and functional assay kits. RESULTS: The study found that different FINs reduced cell viability in a cell line-dependent manner. In addition, we measured increased lipid ROS and intracellular Fe2+ levels upon exposure to FINs in BTC cells. Combining FINs with inhibitors of ferroptosis, necroptosis or apoptosis suggests the occurrence of ferroptotic events in BTC cell lines CCC-5, HuH-28 and KKU-055. Furthermore, we found that BTC cells display a heterogeneous profile regarding different molecular genes/markers of ferroptosis. Subsequent analysis revealed that sensitivity of BTC cells towards IKE and RSL3 positively correlated with CD71 and SLC7A11 protein expression. CONCLUSION: Our results demonstrate that induction of ferroptosis is a promising approach to inhibit BTC cell growth and that the sensitivity of BTC cells towards ferroptosis induction might be dependent on molecular markers such as CD71 and SLC7A11.


Asunto(s)
Neoplasias del Sistema Biliar , Ferroptosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Lípidos , Sistema de Transporte de Aminoácidos y+/genética
6.
Front Immunol ; 15: 1379967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585264

RESUMEN

Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical for maintaining homeostasis and limiting heme-induced tissue damage. Macrophages express HMOX1 and 2 and are critical sites of heme degradation in healthy and diseased states. Here we review the functions of the macrophage heme oxygenase system and its clinical relevance in discrete groups of pathologies where heme has been demonstrated to play a driving role. HMOX1 function in macrophages is essential for limiting oxidative tissue damage in both acute and chronic hemolytic disorders. By degrading pro-inflammatory heme and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1 fine-tunes the acute inflammatory response with consequences for disorders of hyperinflammation such as sepsis. We then discuss divergent beneficial and pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic syndrome, where activation of the HMOX system sits at the crossroads of chronic low-grade inflammation and oxidative stress. Finally, we highlight the emerging role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-dependent form of cell death, ferroptosis. In summary, the importance of heme clearance by macrophages is an active area of investigation with relevance for therapeutic intervention in a diverse array of human diseases.


Asunto(s)
Hemo Oxigenasa (Desciclizante) , Hemo , Humanos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/metabolismo , Relevancia Clínica , Macrófagos/metabolismo , Hierro/metabolismo , Inflamación/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(17): e2318420121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621136

RESUMEN

In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.


Asunto(s)
Linfocitos T CD4-Positivos , Hierro , Ratones , Animales , Hierro/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Hemo/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621946

RESUMEN

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Asunto(s)
Abietanos , Ferroptosis , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado , Transducción de Señal , Triglicéridos/metabolismo , Superóxido Dismutasa/metabolismo , Hierro/metabolismo
9.
Biochem Biophys Res Commun ; 710: 149876, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579537

RESUMEN

1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.


Asunto(s)
Butanoles , Candida tropicalis , Escherichia coli , Escherichia coli/metabolismo , Candida tropicalis/genética , Candida tropicalis/metabolismo , Ingeniería Metabólica , Hierro/metabolismo , Xilosa/metabolismo
10.
Part Fibre Toxicol ; 21(1): 17, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561847

RESUMEN

BACKGROUND: Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS: We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS: Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , MicroARNs , Nanopartículas , Humanos , Miocitos Cardíacos , Dióxido de Silicio/metabolismo , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Hierro/metabolismo , Hierro/farmacología , MicroARNs/metabolismo , Nanopartículas/toxicidad
11.
Med Oncol ; 41(5): 124, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652406

RESUMEN

Ferroptosis is a form of intracellular iron-dependent cell death that differs from necrosis, autophagy and apoptosis. Intracellular iron mediates Fenton reaction resulting in lipid peroxidation production, which in turn promotes cell death. Although cancer cell exhibit's ability to escape ferroptosis by multiple pathways such as SLC7A11, GPX4, induction of ferroptosis could inhibit cancer cell proliferation, migration and invasion. In tumor microenvironment, ferroptosis could affect immune cell (T cells, macrophages etc.) activity, which in turn regulates tumor immune escape. In addition, ferroptosis in cancer cells could activate immune cell activity by antigen processing and presentation. Therefore, ferroptosis could be an effective strategy for cancer therapy such as chemotherapy, radiotherapy, and immunotherapy. In this paper, we reviewed the role of ferroptosis on tumor progression and therapy, which may provide a strategy for cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias , Microambiente Tumoral , Humanos , Ferroptosis/efectos de los fármacos , Neoplasias/terapia , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/inmunología , Inmunoterapia/métodos , Animales , Hierro/metabolismo
12.
Sci Rep ; 14(1): 8451, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605136

RESUMEN

Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.


Asunto(s)
Deficiencias de Hierro , Hierro , Animales , Humanos , Hierro/metabolismo , Fosforilación , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Mamíferos/metabolismo
13.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38573825

RESUMEN

Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.


Asunto(s)
Agua Subterránea , Hierro , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S , Tiosulfatos , Agua Subterránea/microbiología , Tiosulfatos/metabolismo , Hierro/metabolismo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Francia , Genoma Bacteriano , Análisis de Secuencia de ADN , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/metabolismo
14.
Sci Rep ; 14(1): 8272, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594253

RESUMEN

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Asunto(s)
Proteínas de Transporte de Catión , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hemo/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Hierro/metabolismo
15.
PLoS One ; 19(4): e0295732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626041

RESUMEN

Iron (Fe) is a crucial micronutrient needed in many metabolic processes. To balance needs and potential toxicity, plants control the amount of Fe they take up and allocate to leaves and seeds during their development. One important regulator of this process is POPEYE (PYE). PYE is a Fe deficiency-induced key bHLH transcription factor (TF) for allocation of internal Fe in plants. In the absence of PYE, there is altered Fe translocation and plants develop a leaf chlorosis. NICOTIANAMINE SYNTHASE4 (NAS4), FERRIC-REDUCTION OXIDASE3 (FRO3), and ZINC-INDUCED FACILITATOR1 (ZIF1) genes are expressed at higher level in pye-1 indicating that PYE represses these genes. PYE activity is controlled in a yet unknown manner. Here, we show that a small Fe deficiency-induced protein OLIVIA (OLV) can interact with PYE. OLV has a conserved C-terminal motif, that we named TGIYY. Through deletion mapping, we pinpointed that OLV TGIYY and several regions of PYE can be involved in the protein interaction. An OLV overexpressing (OX) mutant line exhibited an enhanced NAS4 gene expression. This was a mild Fe deficiency response phenotype that was related to PYE function. Leaf rosettes of olv mutants remained smaller than those of wild type, indicating that OLV promotes plant growth. Taken together, our study identified a small protein OLV as a candidate that may connect aspects of Fe homeostasis with regulation of leaf growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Deficiencias de Hierro , Humanos , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557602

RESUMEN

The interaction of iron and oxygen is an integral part of the development of life on Earth. Nonetheless, this unique chemistry continues to fascinate and puzzle, leading to new biological ventures. In 2012, a Columbia University group recognized this interaction as a central event leading to a new type of regulated cell death named "ferroptosis." The major feature of ferroptosis is the accumulation of lipid hydroperoxides due to (1) dysfunctional antioxidant defense and/or (2) overwhelming oxidative stress, which most frequently coincides with increased content of free labile iron in the cell. This is normally prevented by the canonical anti-ferroptotic axis comprising the cystine transporter xCT, glutathione (GSH), and GSH peroxidase 4 (GPx4). Since ferroptosis is not a programmed type of cell death, it does not involve signaling pathways characteristic of apoptosis. The most common way to prove this type of cell death is by using lipophilic antioxidants (vitamin E, ferrostatin-1, etc.) to prevent it. These molecules can approach and detoxify oxidative damage in the plasma membrane. Another important aspect in revealing the ferroptotic phenotype is detecting the preceding accumulation of lipid hydroperoxides, for which the specific dye BODIPY C11 is used. The present manuscript will show how ferroptosis can be induced in wild-type medulloblastoma cells by using different inducers: erastin, RSL3, and iron-donor. Similarly, the xCT-KO cells that grow in the presence of NAC, and which undergo ferroptosis once NAC is removed, will be used. The characteristic "bubbling" phenotype is visible under the light microscope within 12-16 h from the moment of ferroptosis triggering. Furthermore, BODIPY C11 staining followed by FACS analysis to show the accumulation of lipid hydroperoxides and consequent cell death using the PI staining method will be used. To prove the ferroptotic nature of cell death, ferrostatin-1 will be used as a specific ferroptosis-preventing agent.


Asunto(s)
Compuestos de Boro , Neoplasias Cerebelosas , Ciclohexilaminas , Meduloblastoma , Fenilendiaminas , Humanos , Peroxidación de Lípido/fisiología , Antioxidantes/farmacología , Hierro/metabolismo , Glutatión/metabolismo , Peróxidos Lipídicos , Fenotipo
17.
Sci Rep ; 14(1): 9134, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644380

RESUMEN

Prolonged exposure to iron powder and other mineral dusts can threaten the health of individuals, especially those with COPD. The goal of this study was to determine how environmental exposure to metal dust from two different mining centers in Brazil affects lung mechanics, inflammation, remodeling and oxidative stress responses in healthy and elastase-exposed mice. This study divided 72 male C57Bl/6 mice into two groups, the summer group and the winter group. These groups were further divided into six groups: control, nonexposed (SAL); nonexposed, given elastase (ELA); exposed to metal powder at a mining company (SAL-L1 and ELA-L1); and exposed to a location three miles away from the mining company (SAL-L2 and ELA-L2) for four weeks. On the 29th day of the protocol, the researchers assessed lung mechanics, bronchoalveolar lavage fluid (BALF), inflammation, remodeling, oxidative stress, macrophage iron and alveolar wall alterations (mean linear intercept-Lm). The Lm was increased in the ELA, ELA-L1 and ELA-L2 groups compared to the SAL group (p < 0.05). There was an increase in the total number of cells and macrophages in the ELA-L1 and ELA-L2 groups compared to the other groups (p < 0.05). Compared to the ELA and SAL groups, the exposed groups (ELA-L1, ELA-L2, SAL-L1, and SAL-L2) exhibited increased expression of IL-1ß, IL-6, IL-10, IL-17, TNF-α, neutrophil elastase, TIMP-1, MMP-9, MMP-12, TGF-ß, collagen fibers, MUC5AC, iNOS, Gp91phox, NFkB and iron positive macrophages (p < 0.05). Although we did not find differences in lung mechanics across all groups, there were low to moderate correlations between inflammation remodeling, oxidative stress and NFkB with elastance, resistance of lung tissue and iron positive macrophages (p < 0.05). Environmental exposure to iron, confirmed by evaluation of iron in alveolar macrophages and in air, exacerbated inflammation, initiated remodeling, and induced oxidative stress responses in exposed mice with and without emphysema. Activation of the iNOS, Gp91phox and NFkB pathways play a role in these changes.


Asunto(s)
Hierro , Ratones Endogámicos C57BL , Estrés Oxidativo , Elastasa Pancreática , Animales , Masculino , Ratones , Hierro/metabolismo , Estrés Oxidativo/efectos de los fármacos , Elastasa Pancreática/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Líquido del Lavado Bronquioalveolar/química , Polvos , Polvo , Inflamación/metabolismo , Inflamación/inducido químicamente
18.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656648

RESUMEN

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Asunto(s)
Astrocitos , Diferenciación Celular , Deficiencias de Hierro , Oligodendroglía , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas de Transporte de Catión/metabolismo , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Ratas , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Deferoxamina/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Hierro/metabolismo
19.
Ann Med ; 56(1): 2346543, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38657163

RESUMEN

Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, causing a substantive threat to the public, which receives global concern. However, there are limited drugs targeting the treatment of DN. Owing to this, it is highly crucial to investigate the pathogenesis and potential therapeutic targets of DN. The process of ferroptosis is a type of regulated cell death (RCD) involving the presence of iron, distinct from autophagy, apoptosis, and pyroptosis. A primary mechanism of ferroptosis is associated with iron metabolism, lipid metabolism, and the accumulation of ROS. Recently, many studies testified to the significance of ferroptosis in kidney tissue under diabetic conditions and explored the drugs targeting ferroptosis in DN therapy. Our review summarized the most current studies between ferroptosis and DN, along with investigating the significant processes of ferroptosis in different kidney cells, providing a novel target treatment option for DN.


Asunto(s)
Nefropatías Diabéticas , Ferroptosis , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Riñón/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Animales , Metabolismo de los Lípidos/efectos de los fármacos
20.
Sci Rep ; 14(1): 9441, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658734

RESUMEN

Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Voluntarios Sanos , Hierro , Leucocitos Mononucleares , Quercetina , Transcriptoma , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Quercetina/farmacología , Transcriptoma/efectos de los fármacos , Hierro/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Perfilación de la Expresión Génica , Masculino , Femenino , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...